Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic by environment interactions affect plant-soil linkages.

Identifieur interne : 002676 ( Main/Exploration ); précédent : 002675; suivant : 002677

Genetic by environment interactions affect plant-soil linkages.

Auteurs : Clara C. Pregitzer [États-Unis] ; Joseph K. Bailey ; Jennifer A. Schweitzer

Source :

RBID : pubmed:23919173

Abstract

The role of plant intraspecific variation in plant-soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18- to 21-year-old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics beneath individual trees. We found that soil nitrogen and carbon varied by over 50% and 62%, respectively, across all common garden environments. We found that plant leaf litter (but not root) traits vary by genotype and environment while soil nutrient pools demonstrated genotype, environment, and sometimes G × E interactions, while process rates (net N mineralization and net nitrification) demonstrated G × E interactions. Plasticity in tree growth and litter chemistry was significantly related to the variation in soil nutrient pools and processes across environments, reflecting tight plant-soil linkages. These data overall suggest that plant genetic variation can have differential affects on carbon storage and nitrogen cycling, with implications for understanding the role of genetic variation in plant-soil feedback as well as management plans for conservation and restoration of forest habitats with a changing climate.

DOI: 10.1002/ece3.618
PubMed: 23919173
PubMed Central: PMC3728968


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic by environment interactions affect plant-soil linkages.</title>
<author>
<name sortKey="Pregitzer, Clara C" sort="Pregitzer, Clara C" uniqKey="Pregitzer C" first="Clara C" last="Pregitzer">Clara C. Pregitzer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Tennessee.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bailey, Joseph K" sort="Bailey, Joseph K" uniqKey="Bailey J" first="Joseph K" last="Bailey">Joseph K. Bailey</name>
</author>
<author>
<name sortKey="Schweitzer, Jennifer A" sort="Schweitzer, Jennifer A" uniqKey="Schweitzer J" first="Jennifer A" last="Schweitzer">Jennifer A. Schweitzer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23919173</idno>
<idno type="pmid">23919173</idno>
<idno type="doi">10.1002/ece3.618</idno>
<idno type="pmc">PMC3728968</idno>
<idno type="wicri:Area/Main/Corpus">002509</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002509</idno>
<idno type="wicri:Area/Main/Curation">002509</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002509</idno>
<idno type="wicri:Area/Main/Exploration">002509</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetic by environment interactions affect plant-soil linkages.</title>
<author>
<name sortKey="Pregitzer, Clara C" sort="Pregitzer, Clara C" uniqKey="Pregitzer C" first="Clara C" last="Pregitzer">Clara C. Pregitzer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Tennessee.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bailey, Joseph K" sort="Bailey, Joseph K" uniqKey="Bailey J" first="Joseph K" last="Bailey">Joseph K. Bailey</name>
</author>
<author>
<name sortKey="Schweitzer, Jennifer A" sort="Schweitzer, Jennifer A" uniqKey="Schweitzer J" first="Jennifer A" last="Schweitzer">Jennifer A. Schweitzer</name>
</author>
</analytic>
<series>
<title level="j">Ecology and evolution</title>
<idno type="ISSN">2045-7758</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The role of plant intraspecific variation in plant-soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18- to 21-year-old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics beneath individual trees. We found that soil nitrogen and carbon varied by over 50% and 62%, respectively, across all common garden environments. We found that plant leaf litter (but not root) traits vary by genotype and environment while soil nutrient pools demonstrated genotype, environment, and sometimes G × E interactions, while process rates (net N mineralization and net nitrification) demonstrated G × E interactions. Plasticity in tree growth and litter chemistry was significantly related to the variation in soil nutrient pools and processes across environments, reflecting tight plant-soil linkages. These data overall suggest that plant genetic variation can have differential affects on carbon storage and nitrogen cycling, with implications for understanding the role of genetic variation in plant-soil feedback as well as management plans for conservation and restoration of forest habitats with a changing climate. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">23919173</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>08</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">2045-7758</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>3</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Ecology and evolution</Title>
<ISOAbbreviation>Ecol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetic by environment interactions affect plant-soil linkages.</ArticleTitle>
<Pagination>
<MedlinePgn>2322-33</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ece3.618</ELocationID>
<Abstract>
<AbstractText>The role of plant intraspecific variation in plant-soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18- to 21-year-old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics beneath individual trees. We found that soil nitrogen and carbon varied by over 50% and 62%, respectively, across all common garden environments. We found that plant leaf litter (but not root) traits vary by genotype and environment while soil nutrient pools demonstrated genotype, environment, and sometimes G × E interactions, while process rates (net N mineralization and net nitrification) demonstrated G × E interactions. Plasticity in tree growth and litter chemistry was significantly related to the variation in soil nutrient pools and processes across environments, reflecting tight plant-soil linkages. These data overall suggest that plant genetic variation can have differential affects on carbon storage and nitrogen cycling, with implications for understanding the role of genetic variation in plant-soil feedback as well as management plans for conservation and restoration of forest habitats with a changing climate. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pregitzer</LastName>
<ForeName>Clara C</ForeName>
<Initials>CC</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Tennessee.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bailey</LastName>
<ForeName>Joseph K</ForeName>
<Initials>JK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schweitzer</LastName>
<ForeName>Jennifer A</ForeName>
<Initials>JA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ecol Evol</MedlineTA>
<NlmUniqueID>101566408</NlmUniqueID>
<ISSNLinking>2045-7758</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Above- and belowground linkages</Keyword>
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">community and ecosystem genetics</Keyword>
<Keyword MajorTopicYN="N">feedbacks</Keyword>
<Keyword MajorTopicYN="N">genetic × environment interactions</Keyword>
<Keyword MajorTopicYN="N">nutrient cycling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>01</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>04</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23919173</ArticleId>
<ArticleId IdType="doi">10.1002/ece3.618</ArticleId>
<ArticleId IdType="pmc">PMC3728968</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ecology. 2008 Feb;89(2):371-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18409427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Sep;29(9):1133-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19578030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Jan;90(1):81-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19294915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2012 Jan;15(1):65-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22070740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1992 Oct;7(10):336-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21236058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Jun;11(6):609-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11505-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18695215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Oct;32(10):2269-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17001533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Oct;89(10):2850-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18959322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 02;486(7401):105-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22678289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2006 Nov;52(4):716-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17061172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Aug 18;313(5789):966-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16917062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Jul;7(7):510-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2007 May;22(5):250-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17296244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2011 Feb;24(2):422-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21091573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1989 Jun;15(6):1795-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 Nov;123(3):557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2574697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2011 Sep;92(9):1807-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21939077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2010 Jul;163(3):675-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20354729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Mar;89(3):773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18459340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 May;160(1):119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19214586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2009 Jun 12;364(1523):1607-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19414474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Feb 26;327(5969):1129-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20185724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10394-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22689971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2010 Sep;91(9):2660-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20957960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2006 Jan;9(1):24-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16958865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Aug;195(3):631-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22642377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Nov;15(13):4215-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17054514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Mar;8(3):185-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17279094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2001 Jul;55(7):1325-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2008 Nov;158(1):65-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18766383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Jun;136(1):124-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684853</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bailey, Joseph K" sort="Bailey, Joseph K" uniqKey="Bailey J" first="Joseph K" last="Bailey">Joseph K. Bailey</name>
<name sortKey="Schweitzer, Jennifer A" sort="Schweitzer, Jennifer A" uniqKey="Schweitzer J" first="Jennifer A" last="Schweitzer">Jennifer A. Schweitzer</name>
</noCountry>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Pregitzer, Clara C" sort="Pregitzer, Clara C" uniqKey="Pregitzer C" first="Clara C" last="Pregitzer">Clara C. Pregitzer</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002676 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002676 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23919173
   |texte=   Genetic by environment interactions affect plant-soil linkages.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23919173" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020